Key steps to achieve 100% renewable electricity (Germany target 2050)

ATPER 2013 Conference

Stockholm June 1-2, 2013

Siriluk Pumirat (M.Sc.)

Fraunhofer-Gesellschaft

- is the largest organization for applied research in Europe
- maintains 66 institutes and research units
- more than 22,000 staff are qualified scientists and engineers
- €1.9 billion annual research budget totaling
 - €1.6 billion is generated through contract research
 - 70% of contract research revenue is derived from contracts with industry
 - 30% is contributed by the German federal and governments
- Research centers and representative offices in Europe, USA, Asia.

Fraunhofer Institute for Wind Energy and Energy System Technology (IWES)

- Competence Center Rotor Blades
- Drive Engineering and System Technology
- Support Structures
- Turbine Simulation, Software Development and Aerodynamics
- Systems Engineering and Distribution Grids
- Energy Economy and Grid Operation
- Wind Farm Planning and Operation
- Bioenergy System Technology
- Control Engineering and Energy Storage Systems
- Marine Energy

Outline

- Timeline of electrical energy systems technology
- Do we have enough resource?
- Currently facing problems. How to handle?
- Conclusion and outlook

Timeline of electrical energy systems technology

- Less natural resources
- Energy harvesting
- Alternative energy e.g. nuclear or hydropower
- Renewable energy (RE)

- Investment of RE
- Policy
- Sell RE to main grid
- Increasing of decentralized generations (DG)
- Network problem!
 - Energy over capacity
 - Uncontrolable the large number of DG

Do we have enough resource? → statistic of renewable energy generation (2006-2009)

S. Pumirat © Fraunhofer IWES

→ Generation VS Consumption (2007)

WES

S. Pumirat © Fraunhofer IWES

→ Residual loads with load management and storage

residual load (in GW) Max. residual load: 58.1 GW 60 40 20 -20 -40 -60 Min. residual load: -63.6 GW -80 -100 -120 Feb Oct Nov Dec Month Ian Mar Ant May Iun hil Aug Sen

- 1. Basic residual load
- 2. Residual load with load management
- 3. Residual load with load management & storage
 - Deficit (load > feed-in from RES)

Surpluses (feed-in from RES > load)

→ Simulation of covering the residual load

→ Energy balance – prediction of year 2050 based on statistic of 2006-2009

Current situations and facing problems → What happen on the network?

Situations	Problems	
Small DGs sell electricity to grid	Over energy in the poolNo energy balanceBlack out	MS NS HAS MS Netz U MS Netz U MS Netz U MS Netz U
If they do not consider about grid stability	 Over frequency Over voltage System fault	MS NS HAS
If they consider about grid stability	 Over dimension design for generators But how can network providers give them the information to follow? 	MS Netz

\rightarrow General problems of grid integration

Grid integration problems	Note
Power quality	Guarantee of frequency and phase \rightarrow 50 Hz \pm 2%, 120° phase shift \rightarrow Synchronization btw clusters
Voltage stability	Guarantee of voltage level e.g. 230 $V_{RMS} \pm 10\%$ \rightarrow Voltage drop or peak
Harmonics distortion	Caused by nonlinear loads or electronic generators e.g. inverters which result to the bad power quality
Reliability	Stable or fault
Protection	New system structure \rightarrow New protection rules
Control	Centralized VS decentraliced control

\rightarrow Power network stability and control

- Frequency stability
 - Draw active power (P) from grid \rightarrow freq. drops
 - Feed-in P into grid → freq. increases
- Voltage stability
 - Inject reactive power (Q) into grid \rightarrow V drops
 - Consume $Q \rightarrow V$ increases
- Angle stability
 - Synchronization at point of common coupling
 - Synchronization method e.g. phase-locked loop (PLL)
- Control methods
 - Centralized control (traditional)
 - Decentralized control

→ Grid supporting (decentralized control by setting of power factor

Techniques	Details
$cos(\varphi) = const$	Means, if they want to sell more P, they have also to inject more Q More Q means more heat loss
$cos(\varphi) = f(P)$	The power factor depends on P The curve is given by network providers Depends on network characteristic, not flexible
P = f(freq)	It does not allow to inject further P if the frequency is out of band The curve is given by network providers Depends on network characteristic, not flexible
$Q = f(U_{PCC})$	Injected reactive power depends on voltage at the point of common coupling (PCC) The curve is given by network providers Depends on network characteristic, not flexible
Q = const	Q is always injected even no energy on offer Heat loss and poor durability
$P = f(U_{PCC}, I_{PCC})$ $Q = f(U_{PCC}, I_{PCC})$	Automatic detection algorithm Intelligent, redundance, heat loss reduction Oscillation can be easily occured

Conclusion and outlook

- From the statistics and simulation results, the electricity generated by renewable sources is enough to provide loads in the whole country
- Peak loads can be covered by technique of load management and energy storage
- If there are a lot of DGs, grid integration is not easy. Network instability occurs
- To support networks, varying of P and Q injection can help to maintain the frequency and voltage in the stability band
- The automatic detection and control of P, Q for decentralized DGs (droop control) has a high potential for the future grid structure (microgrid cluster)
- The droop control method VS the network oscillation is a ongoing research

Thank you for your attention lestion and the second 15.10 A. C.C.