UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Risk, Reliability, and Uncertainty in Infrastructure Systems

(ความเสี่ยง ความน่าเชื่อถือ และความไม่แน่นอนในระบบโครงสร้างพื้นฐาน)

Supervised by Prof. Dr.-Ing. Hans-Dieter Kochs

Based on the doctoral dissertation "Uncertainty in Reliability Evaluation: A Framework and Practical Case Studies" of the same author

Background (ความเป็นมา)

- Fundamental changes in Thai economics
 - International fund flow
 - Infrastructure funds
 - 2 trillion Baht infrastructure investment
- Lack of risk, reliability, and uncertainty research
- Proposal of a reliability engineering framework

Infrastructure Systems (ระบบโครงสร้างพื้นฐาน)

- Guideline from Capital Market Supervisory Board (คณะกรรมการกำกับตลาดทุน) *
 - 1. Public Property
 - 2. Public Service

^{*} http://capital.sec.or.th/webapp/nrs/nrs_search.php?chk_frm=1&ref_id=99&cat_id=1233 Risk, Reliability, and Uncertainty in Infrastructure Systems, Poom Kongniratsaikul

Failures (ความล้มเหลว)

- Public → Large-scale system
- High severity failure
- Infrastructure system reliability evaluation

Reliability (ความน่าเชื่อถือ)

• Reliability (ความน่าเชื่อถือ)

- Survivability
- When does it fail to perform a required function?

- Reliability + Maintainability
- Is it available of service at a specific time?

- Reliability + Availability + Qualitative Attributes

MTTF = 12 months Pr(Fail, 12 months) = $1-e^{-1} = 63\%$

MTTF = 12 months MTTR = 1 month Availability = 12/13 = 92%

Uncertainty (ความไม่แน่นอน)

- Categorization by Types
 - Aleatory (Irreducible)
 - Epistemic (Reducible)
- Categorization by Sources [Walley 1991]
 - Indeterminacy
 - Incompleteness

Complete Knowledge Poom Kongniratsaikul

Risk (ความเสี่ยง)

- Risk (ความเสี่ยง)
 effect of uncertainty on objectives [ISO 31000 2009, ISO Guide 73 2009]
- Risk management (การจัดการความเสี่ยง)
 coordinated activities to direct and control an organization with regard to risk [ISO 31000 2009, ISO Guide 73 2009]

Reliability Evaluation Framework (กรอบความคิดของการประเมินความน่าเชื่อถือ)

Overview of Electrical Power System

Example of Lifetime Data: Square Butte HVDC

Data Year	AC-E		V		C&P		DC-E		0		Total Operating	
	No. of Failures	Time to Repair (h)	No. of Failures	Time to Repair (h)	Time (h) *							
2001	5	25.6	0	0	1	0.1	3	7.8	1	5.6	8720.9	
2002	5	5.9	1	13.2	1	0	1	33.9	0	0	8707	
2003	2	1.7	3	5.8	4	0.1	0	0	1	0.2	8752.2	
2004	9	38.7	0	0	7	6.8	3	4.3	0	0	8710.2	
2005	2	23.8	3	8.6	2	2.7	0	0	1	40.3	8684.6	
2006	0	0	1	0.6	1	2.5	2	5.6	1	2	8749.3	
Total	23	95.7	8	28.2	16	12.2	9	51.6	4	48.1	52324.2	

^{* 24-}hour operation in 365 days minus the total of time to repair

Approach 1: Aleatory Uncertainty

$\beta = 1.0$ (exponential)	Ti(U _s)	Ti(D _s)	Pr(U _s)	Pr(D _s)	Fr(U _s)	Fr(D _s)
mean	8.72E+02	3.94E+00	9.96E-01	4.50E-03	1.14E-03	1.14E-03

conventional calculation method (approximated)

$\beta = 1.0$ (exponential)	t(U _s)	t(D _s)	Pr(U _s)	Pr(D _s)	Fr(U _s)	Fr(D _s)
min _{10%}	9.21E+01	2.17E-01	9.03E-01	1.08E-04	4.97E-04	9.80E-03
mean	8.75E+02	3.94E+00	9.96E-01	4.48E-03	1.14E-03	1.14E-03
max _{90%}	2.01E+03	9.94E+00	1.00E+00	9.74E-02	9.80E-03	4.97E-04

simulation

min-max calculation

Approach 2: Epistemic Uncertainty

	AC-E		V		C&P		DC-E		0		Total
System	No. of Failures	Time to Repair (h)	Operating Time (h) *								
Square Butte	18	70.1	8	28.2	15	12.1	6	43.8	3	42.5	52324.2
Vancouver Island Pole 2	16	51.7	4	31.2	8	45.3	4	8.5	8	12.4	52410.9

^{* 24-}hour operation in 365 days minus the total of time to repair

	Simulation Results										
Measure	Index	Ti(U _s)	Ti(D _s)	Pr(U _s)	Pr(D _s)	Fr(U _s)	Fr(D _s)				
Central Tendency	Arithmetic Mean Median	1.23E+03 1.23E+03	4.36E+00 4.35E+00	9.96E-01 9.96E-01	3.56E-03 3.52E-03	8.16E-04 8.13E-04	8.16E-04 8.13E-04				
Location	80% Confidence - Min _{10%} - Max _{90%}	1.12E+03 1.33E+03	3.57E+00 5.17E+00	9.96E-01 9.97E-01	2.86E-03 4.31E-03	7.49E-04 8.87E-04	7.49E-04 8.87E-04				
Dipersion	Variance S.D. Skewness Excess Kurtosis	6.18E+03 7.86E+01 2.30E-02 2.55E+00	3.77E-01 6.14E-01 1.06E-01 2.69E+00	3.16E-07 5.63E-04 -3.56E-01 2.99E+00	3.18E-07 5.64E-04 3.57E-01 2.99E+00	2.76E-09 5.25E-05 2.79E-01 2.69E+00	2.76E-09 5.25E-05 2.79E-01 2.69E+00				

• Approach 3: Early Design Stage

Summary (สรุปเนื้อหาสำคัญ)

- Infrastructure Systems
- Risk, Reliability and Uncertainty
 - Practical Engineering Framework
 - Case studies from infrastructure system
- Can be applied to Thailand infrastructure developments

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Q / A คำถาม / คำตอบ

